DTE Energy®

Detroit Edison's Advanced Implementation of Community Energy Storage Systems for Grid Support (DE-OE0000229)

Nicholas Carlson Senior Engineer

October 20, 2011

Agenda

- CES Overview
- Project Team & Roles
- Project Phases and Schedule
- CES Operating Zones
- Communication & Control Architecture
- CES Modes of Operation
- CES Baseline & Location Selection Criteria
- CES Test Plan
- Secondary Use of Electric Vehicle Batteries
- Future Work

Community Energy Storage

- The project is a proof of concept of an aggregated Community Energy Storage (CES) system in a utility territory; demonstrating the following capabilities:
 - Voltage/VAR Support
 - Integration renewable generation
 - Islanding during outages
 - Frequency Regulation
- Demonstrate the application of secondary-use EV batteries as CES devices.
 Identifying alternative applications for EV type batteries may accelerate the reduction of cost for electric vehicle batteries.
- Identify gaps, areas of improvement, and provide suggestions on how CES devices and control algorithms can be standardized to be used across the U.S.
- Provide a functional and economic analysis for using the CES system in electric utility applications.

Project Team and Role

Project Team Members & Roles				
Team Member	Role			
DTE Energy	Project lead			
	 Utility participant for CES filed demo 			
	Project reporting			
5 ₈ C A123 SYSTEMS	CES Unit suppliers			
	 Factory acceptance testing 			
	Technical Support			
KEMA≼	CES functional testing			
	 Economic analysis and reporting 			
	Technical Support			
edd	 Circuit model development for baseline 			
	 Reliability & economic dispatch algorithm 			
CHRYSLER	 Durability & conditioning testing of EV battery 			
	 Secondary use EV battery supplier 			
	 Provide baseline data for EV battery 			
NEXTÉNERGY	 Investigation of regulatory issues surrounding 			
	energy storage and renewables			
national grid	Technical Support			

Project Phases

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5
Project Definition and NEPA Compliance	Final Design and Construction	Commissioning and Operations	Utilization of Secondary Use Batteries	Write Up of Demonstration Assessment
 Update Project Management Plan NEPA Compliance Baseline for Evaluating Project Performance Preliminary Design & Planning 	 Finalize Design of CES System CES System Design for Project Planning, Measuring, Architecture and Algorithms Creation of Dispatch Algorithms Communications and Control Procurement of CES Systems for Installation 	 Commissioning of Operational Functionalities Field Testing of Designed CES Capabilities Data Monitoring and Collection of Performance Data Reporting of Data and Operation 	• Integration of Secondary Use Batteries	Write final report
01/2010-05/2011	01/2011-06/2012	07/2012-12/2014	07/2013-06/2014	07/2014-12/2014

CES – Operating Zones

Modes of Operation

- Standby Operation Mode
 - Locally-initiated operation due to power loss or site-specific power quality issue.
 - This mode of operation pre-empts all other modes unless specifically overridden.
- Scheduled Operation Mode
 - Control is initiated by the DRSOC Hub on a pre-defined unit-specific schedule.
- Automatic Generation Control (AGC) Mode
 - Aggregate kW output is requested by the Independent System Operator (ISO).
 Individual units are dispatched by the DRSOC Hub at the appropriate outputs to meet the AGC set-point.
- Hub Command Mode
 - Control is initiated by an operator and dispatched on a unit-specific basis by the DRSOC Hub.
- Peak-shaving Mode
 - Units are dispatched by the DRSOC Hub to ensure that circuit ratings are not exceeded.

Modes of Operation (Continued)

- DEW Economic & Reliability Dispatch Modes
 - Control is initiated by algorithms implemented in the DEW software package.
 - Algorithms are intended to maximize the economic potential of the unit.
 - May include running of the CES units in grid-parallel mode under normal circuit conditions.
 - Dispatching is done by the DRSOC Hub to each CES unit.
- DEW Model-Based Real Time Control
 - CES Operation Modes:
 - Normal: Economic
 - Storm: Reliability (Load Serving)
 - Objective Function:
 - Minimize Operation Cost
 - Minimize Loss
 - Maximize Load Serving Time After Outage

CES - Communications Architecture

DEW CES Control Module I/O

Distribution Circuit in DEW

Simulation Results, One CES Unit

Simulation Results, 20 CES Units

CES Units Output and RT LMP _Weekday

CES Test Plan

Testing	Test Description	
Equipment/ Factory Acceptance Test	S&C will design perform a factory acceptance test for the CES equipment KEMA will provide an independent evaluation of initial design CES equipment.	
Functional Test	KEMA will develop a test plan and witness testing that will demonstrate the CES Unit capability to provide specific fundamental functions: i. Peak shaving, volt-VAR, demand response (ii. Remote communication and control of CES unit (DR SOC emulation) iii. Islanding iv. Respond to AGC simulated signal	
System Test (DTE Field)	 The system test and evaluation will be performed in the field as the units are installed. 	
Testing of Automotive Batteries for Secondary Use Application	KEMA's KERMIT model will be used for a portion of this analysis, establishing a model that projects remaining lifetime based on vehicle usage profile)	
Comparative Test	 CES Unit original design test results will be compared to testing done on an identical CES Unit removed from service. 	

Secondary Use of EV Batteries

Battery Conditioning & Vehicle Durability Testing

Project Activity

- Vehicle durability testing/battery conditioning started in June of 2011
- Additional vehicles assigned to this program will begin durability testing later this month

Testing Locations for Mileage Accumulation & Battery Conditioning

- Chelsea Proving Grounds Chelsea, MI
- Arizona Proving Grounds Yucca, AZ
- Undisclosed Public Roads throughout North America

Secondary Use of EV Batteries

Battery Conditioning & Vehicle Durability Testing

Beginning of Vehicle Reliability Testing

- Capacity Verification Test
- Power pulse capability

Quarterly

- Cumulative vehicle miles
- Number of charge cycles
- Energy per charge and charge time
- Summary of battery issues related to DOE program

End of Automotive Useable Life – or End Vehicle Reliability Test

- Capacity Total Available Energy
- 10 sec power pulse capability
- Total Charge / Discharge cycles
- Cumulative vehicle miles

Future Work

- Finalize functional test plan
- Test DR-SOC communication and controls with CES unit with S&C CES control unit
- Test and validate DEW reliability and economic dispatch algorithm
- Finalize physical design of CES unit
- Begin internal CES equipment review and approval process
- Begin working with communities on site approval process